Catégorie dans Astuces techniques

Déployer Kubeapps pour un usage multi-clusters

 

Dans cet article nous allons voir comment déployer Kubeapps en environnement multi-cluster. Habituellement il se déployait cluster par cluster, ici, l’objectif est d’avoir une seule instance Kubeapps capable de déployer et de gérer les applications sur plusieurs clusters. Pour cela, il faut que chaque cluster soit capable de s’authentifier à une source IdP (Identity Provider).

Dans mon exemple je vais utiliser des clusters TKG 1.2.1 avec l’extension incluse Dex. Dex va permettre l’authentification avec un provider OpenID Connect (OIDC).  Pour info, dans notre exemple l’extension Gangway qui normalement va de pair avec Dex n’est pas utile. Elle sert à générer un Kubeconfig une fois que l’utilisateur s’est authentifié via la page web du cluster. Kubeapps n’a pas besoin de cette extension car il utilise un proxy Oauth2. Sur mon environnement, je vais utiliser des clusters existant qui sont déjà configurés avec l’extension Gangway et 1 que je vais créer sans installer Gangway (2 clusters auraient pu suffire mais c’est tellement simple à déployer avec TKG qu’on ne va pas se priver).

Étape primordiale, c’est d’ avoir l’extension Dex d’installée sur le cluster de management et le configurer pour qu’il puisse faire des requêtes sur une source IdP : https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.2/vmware-tanzu-kubernetes-grid-12/GUID-extensions-dex.html. Une fois Dex installé, il faut créer des clusters de workload compatibles OIDC et déployer Kubeapps sur un cluster de préférence distinct (ou commencer par installer Kubeapps et le mettre à jour pour qu’il prenne en compte les nouveaux clusters).

Exporter les variables sur l’environnement du cluster DEX :

export AUTH_MGMT_CLUSTER=”auth-mgmt-cluster-admin@auth-mgmt-cluster” # nom de mon cluster de management
export OIDC_ISSUER_URL=https://172.20.7.10:30167 #IP et Port de mon cluster de management où est installé DEX
export OIDC_USERNAME_CLAIM=email
export OIDC_GROUPS_CLAIM=groups
export OIDC_DEX_CA=$(kubectl get secret dex-cert-tls -n tanzu-system-auth -o ‘go-template={{ index .data “ca.crt” }}’ –context $AUTH_MGMT_CLUSTER| base64 -d | gzip | base64) # certificat du cluster de management

Créer ensuite les clusters de workloads :

tkg create cluster usine-32 –enable-cluster-options oidc –plan dev –vsphere-controlplane-endpoint 172.20.7.17

Logs of the command execution can also be found at: /tmp/tkg-20210106T094128013610360.log
Validating configuration…
Creating workload cluster ‘usine-32’…
Waiting for cluster to be initialized…
Waiting for cluster nodes to be available…
Waiting for addons installation…
Workload cluster ‘usine-32’ created

 

Récupérer le context du cluster pour qu’il soit intégré dans le kubeconfig et ainsi récupérer l’url de l’API server: et le certificat certificateAuthorityData:

tkg get credentials usine-32
Credentials of workload cluster ‘usine-32’ have been saved
You can now access the cluster by running ‘kubectl config use-context usine-32-admin@usine-32’

 

Se connecter au cluster afin d’autoriser les utilisateurs à s’y connecter et de déployer des applications :

kubectl config use-context usine-32-admin@usine-32

cat << EOF | kubectl apply –
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: tkg-users
subjects:
  – kind: Group          # Donner le rôle au groupe, mettre User si vous souhaitez cibler un user en particulier
    name: tkg-users # Mettre le nom du groupe, tous les utilisateurs du groupe seront pris en compte
    apiGroup: “”
roleRef:
  kind: ClusterRole #this must be Role or ClusterRole
  name: cluster-admin # ClusterRole à avoir
  apiGroup: rbac.authorization.k8s.io
EOF

 

Une fois le cluster créé, les droits d’accès positionnés, l’url et le certificat récupérés (si besoin, reproduire les mêmes étapes pour d’autres clusters de workload), il reste deux fichiers à modifier, l’un concerne le fichier de valeurs de l’installation de Kubeapps et l’autre le fichier de configuration DEX.

Modification du fichier de valeurs pour l’installation de Kubeapps (Exemple provenant de mon collègue Michael Nelson : https://liveandletlearn.net/post/kubeapps-on-tkg-management-cluster/) :

# Dans mon exemple Kubeapps est accessible au travers d’un LoadBalancer
frontend:
  service:
    port: 80
    type: LoadBalancer
# Setup the oauth2-proxy running on the frontend to handle the OIDC authentication
authProxy:
  enabled: true
  provider: oidc
  clientID: auth-tools
  ## les deux Secrets ci-dessous sont à générer par vous-même (32 octets max)
  clientSecret: wPmp8+IrTxbGZbVF/yqPPeP4XZzw5mLt
  cookieSecret: fiUrXyEBQx7uWlcw55CxQkbYwZ4a/cC7
  additionalFlags:
    # C’est l’adresse IP et le port de DEX qui est installé sur le cluster de management
    – –oidc-issuer-url=https://172.20.7.10:30167
    # les clusters derrières le mot audience sont les clusters sur lesquels les déploiements seront autorisés, ils doivent aussi figurer en bas de ce fichier et dans le fichier de configuration Dex
    – –scope=openid email groups audience:server:client_id:workload-01 audience:server:client_id:workload-02 audience:server:client_id:usine-01 audience:server:client_id:usine-32
    # Comme j’ai des certificats autosignés, il ne faut pas les vérifier auprès d’une autorité
    – –ssl-insecure-skip-verify=true
    # Since Kubeapps is running without TLS, can’t use secure cookies
    – –cookie-secure=false
    # If you need to access the actual token in the frontend for testing, uncomment the following.
    # – –set-authorization-header=true
# Liste des clusters sur lesquels les déploiements seront autorisés, les mêmes renseignés un peu plus haut
# L’apiServiceURL et le certificateAuthorityData sont ceux récupérés dans le fichier kubeconfig un peu plus haut
# dans mon exemple j’ai 4 clusters de workload
clusters:
  – name: workload-01
  apiServiceURL: https://172.20.7.14:6443
  certificateAuthorityData: USUZJQ0FURS0tQkFRc0ZBREFWTVJNd0……..E9KOFhFQUI1aVBqVDQxWXZzeEE9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
  – name: workload-02
  apiServiceURL: https://172.20.7.15:6443
  certificateAuthorityData: LS0tLS1CRUdJTiBDRVJUSUZJQ0FBREFWTVJNd0…….wS1V1UUgvcCtjMWkvYW89Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
  – name: usine-01
  apiServiceURL: https://172.20.7.16:6443
  certificateAuthorityData: LS0TkJna3Foa2lHOXcwQkFRc0ZBREFWTVJNd0….Es2RWpSNys2NkNlT2dpeHcxVUk9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K
  – name: usine-32
  apiServiceURL: https://172.20.7.17:6443
  certificateAuthorityData: BTkJna3Foa2lHOXcwQkFRc0ZBREFWTVJNd0…cldORUNGb3FJelZkdXdKRGNFMTA9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K

 

Maintenant, on peut installer Kubeapps dans un namespace avec comme paramètre ce fichier de valeurs (ici, je l’ai appelé kubeapps-dex.yaml) :

kubectl create namespace kubeapps-system
helm install kubeapps bitnami/kubeapps –namespace kubeapps-system –values kubeapps-dex.yaml

Si vous êtes amené à modifier le fichier de configuration comme par exemple pour ajouter un autre cluster, vous pouvez utiliser cette commande :

helm upgrade kubeapps bitnami/kubeapps –namespace kubeapps-system –values kubeapps-dex.yaml

 

Maintenant, il faut dire à Dex qu’il y a de nouveaux clusters créés

cat ~/tkg/tkg-extensions-v1.2.0+vmware.1//extensions/authentication/dex/vsphere/ldap/dex-data-values.yaml

# Partie à modifier extraite du fichier de configuration utilisait par Dex : ~/tkg/tkg-extensions-v1.2.0+vmware.1//extensions/authentication/dex/vsphere/ldap/dex-data-values.yaml
  #@overlay/replace
  staticClients:
  – id: usine-01 # nom de mon cluster de workload, attention à garder le même nom que dans le fichier de valeurs utilisé par Kubeapps
    redirectURIs:
    – https://172.20.7.16:30166/callback # Adress IP de l’API du cluster de workload et le port normalement utilisé par Gangway
    name: usine-01
    secret: a1094138692761b8bd653e7af36c3d57 # Secret normalement utilisait par Gangway à mettre même si Gangway n’est pas installé, dans ce cas mettez ce que vous voulez
    trustedPeers:
    – auth-tools # nom du cluster Kubeapps
  – id: usine-32
    redirectURIs:
    – https://172.20.7.17:30166/callback
    name: usine-32
    secret: a1094138692721b8bd653e7af36c3d57
    trustedPeers:
    – auth-tools
  – id: workload-01
    redirectURIs:
    – https://172.20.7.14:30166/callback
    name: workload-01
    secret: e36a415d615ccbf37b4c4b8316be9740
    trustedPeers:
    – auth-tools
  – id: workload-02
    redirectURIs:
    – https://172.20.7.15:30166/callback
    name: workload-02
    secret: 85507bc84d6d26899aa9bf1c87600f81
    trustedPeers:
    – auth-tools
  – id: auth-tools
    redirectURIs:
    – http://172.20.7.130/oauth2/callback # Adresse IP de ma VIP qui pointe vers Kubeapps
    name: auth-tools # nom du cluster où j’ai installé Kubeapps, j’ai choisi de l’installer sur un cluster à part
    secret: wPmp8+IrTxbGZbVF/yqPPeP4XZzw5mLt #clé renseignée dans le fichier Kubeapps « clientSecret »

Une fois modifier, il faut dire à Dex de prendre en compte la nouvelle configuration, à faire à partir du cluster de management où Dex est installé :

kubectl create secret generic dex-data-values –from-file ~/tkg/tkg-extensions-v1.2.0+vmware.1/extensions/authentication/dex/vsphere/ldap/dex-data-values.yaml -n tanzu-system-auth -o yaml –dry-run | kubectl replace -f-

Voilà, maintenant Kubeapps est prêt à être utilisé sur les 4 clusters configurés :

A partir d’un navigateur entrez l’adresse où le nom de la VIP kubeapps obtenue et cliquez sur “LOGIN VIA OIDC PROVIDER:”

 

Vous êtes ensuite redirigé vers la page d’authentification DEX, vous remarquerez que l’IP et le port sont ceux renseignés dans le fichier de configuration DEX, entrez votre compte et votre mot de passe :

Vous arrivez ensuite sur la page du cluster et namespace par défaut, l’écran est vide car il n’y a pas eu de déployement via HELM ou via un Operator sur le namespace et cluster défault :

Vous pouvez changer de cluster et de namespace en cliquant sur “Current Context” en haut à droite :

 

 

 

Comment supprimer des containers volumes “orphelins” dans vSphere

Lorsque vous créez des volumes Kubernetes hébergés sur vSphere, cela génère des fichiers VMDKs, ils sont visibles au travers de l’interface graphique

C’est très utile, il est même possible de voir à quel cluster les volumes appartiennent.

Dans certaines situations, vous pouvez vous retrouver avec des volumes dits orphelins, notamment si un cluster Kubernetes est supprimé “brutalement”. Malheureusement il n’est pas possible de supprimer ces volumes/vmdks depuis l’interface graphique (à date de la rédaction de cet article, vSphere 7). Pour ce faire, il existe d’autres possibilités comme par exemple utiliser l’utilitaire govc développé par VMware. Cependant la version habituelle (référence à la version govc version 0.23.0) ne prend pas en charge les options volume.ls et volume.rm, il faut pour cela utiliser une version à compiler soi-même. ci-dessous les étapes à respecter pour y parvenir :

Installer go (sur Ubuntu server dans mon cas), il est important d’avoir une version récente : https://golang.org/doc/install

Lancer la commande go suivante  : go get -u github.com/vmware/govmomi/govc (https://github.com/vmware/govmomi/tree/master/govc). Ca va télécharger les sources dans le répertoire ~/go/src, compiler et stocker le binaire govc dans ~/go/bin.

il faut positionner ensuite un certain nombre de variable à govc afin qu’il puisse se connecter à l’infrastructure, exemple :

export GOVC_URL=<fqdn du vcenter>
export GOVC_USERNAME=<compte avec des droits en consultation>
export GOVC_PASSWORD=<mot de passe du compte>
export GOVC_INSECURE=true (si vous utilisez des certificats non signés)

Grâce à ce govc spécifique, vous pouvez utiliser la commande ~/go/bin/govc volume.ls pour lister tous les volumes et la commande ~/go/bin/govc volume.rm <volume>. Attention à bien choisir les volumes orphelins sinon vous risquez de perdre des données.

Un développeur à fait un script intéressant pour supprimer les volumes orphelins : https://gist.github.com/bburky/fd729f129347b9141255fbc2185c52ea#file-remove-orphaned-cns-volumes-sh-L1 (attention ce script suppose que govc soit dans votre variable $PATH, si ce n’est pas le cas mettez cette variable à jour ou modifier le script pour qu’il pointe sur le bon govc).

Ce script à un petit bémol auquel il faut prêter attention, il suppose qu’il y ait un seul cluster car il utilise la commande kubectl, celle-ci se connecte en utilisant le contexte actif. Si vous avez plusieurs clusters kubernetes hébergés sur votre infrastructure, vous risquez de supprimer des volumes vus comme orphelin alors qu’ils peuvent potentiellement appartenir à d’autres clusters Kubernetes, j’ai soumis au développeur du script cette modification :

> "$temp_dir/kubernetes-temp.txt"
for context in $(kubectl config view -o jsonpath='{.contexts[*].name}')
do
        echo checking context : $context
        kubectl get pv -o jsonpath='{range .items[*]}{.spec.csi.volumeHandle}{"\t"}{.metadata.name}{"\n"}{end}' --context $context  >> "$temp_dir/kubernetes-temp.txt"
done
sort $temp_dir/kubernetes-temp.txt > $temp_dir/kubernetes.txt

Ce n’est pas encore parfait, il peut inclure des volumes provenant de cluster Kubernetes non vSphere mais il n’y aura pas d’incidence sur la suppression des volumes.

 

Ajouter un self-signed certificat dans Kubernetes avec Containerd

Dans cet article (Déployer Harbor avec type loadBalancer) j’ai expliqué comment déployer Habor et utiliser le certificat self-signed pour que Docker puisse l’utiliser. Si vous utilisez Kubernetes avec docker, vous pouvez aussi suivre cette procédure sur chaque worker node. Sinon vous risquez d’avoir l’erreur suivante :

Unknown desc = failed to pull and unpack image “harbor.cpod-tkg.az-lab.shwrfr.com/memecached/hello-world:latest”: failed to resolve reference “harbor.cpod-tkg.az-lab.shwrfr.com/memecached/hello-world:latest”: failed to do request: Head https://harbor.cpod-tkg.az-lab.shwrfr.com/v2/memecached/hello-world/manifests/latest: x509: certificate signed by unknown authority
Warning Failed 12s (x2 over 24s) kubelet, tkg-utility-md-0-798c695db5-pjgsk Error: ErrImagePull

Si vous utilisez Kubernetes avec Containerd, la procédure est différente. Mon collègue Rob Hardt (https://gist.github.com/rhardt-pivotal/) a développé un script pour ça : https://gist.githubusercontent.com/rhardt-pivotal/4aa09ced6302194561936717262bb203/raw/623c707748925c969c525ade4bb432f95b61cff0/node-ca-updater-daemonset.yaml

Il faut néanmoins modifier les 3 champs en rouge :

apiVersion: v1
data:
  ca.pem: |+
    —–BEGIN CERTIFICATE—–
    Mettre votre certificat
    —–END CERTIFICATE—–

kind: ConfigMap
metadata:
 name: trusted-ca-cm
 namespace: default

   —-

apiVersion: v1
data:
    build-ca.sh: “#!/usr/bin/env bash \nset -euxo pipefail\ntdnf update \ntdnf install -y ca-certificates\ntdnf install -y openssl-c_rehash\necho \”$TRUSTED_CERT\” > /etc/ssl/certs/my-trusted-cert.pem\n/usr/bin/rehash_ca_certificates.sh\ncurl -vv https://<Votre URL HARBOR>\n”
kind: ConfigMap
metadata:
    name: rehash-script
    namespace: default
—   
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: trusted-ca-updater
  namespace: default
  labels:
    k8s-app: trusted-ca-updater
spec:
  selector:
    matchLabels:
      name: trusted-ca-updater
  template:
    metadata:
      labels:
        name: trusted-ca-updater
    spec:
      tolerations:
      # this toleration is to have the daemonset runnable on master nodes
      # remove it if your masters can’t run pods
      – key: node-role.kubernetes.io/master
        effect: NoSchedule
      initContainers:
      – name: script-runner
        image: photon:3.0
        command: [“/bin/sh”, “-c”, “/root/build-ca.sh” ]
        volumeMounts:
        – name: update-trusted-certs-script
          mountPath: /root/
        – name: certs-dir
          mountPath: /etc/ssl/certs
        – name: agg-certs-dir
          mountPath: /etc/pki/tls/certs/
        env:
        – name: TRUSTED_CERT
          valueFrom:
            configMapKeyRef:
              name: trusted-ca-cm
              key: ca.pem   
        resources:
            limits:
              ephemeral-storage: 30G # mettre une plus petite taille
      containers:
      – name: sleepy
        image: photon:3.0
        command: [“/bin/sh”]
        args: [“-c”, “while true; do sleep 3600;done”]
      volumes:
      – name: update-trusted-certs-script
        configMap:
            name: rehash-script
            defaultMode: 0766
      – name: certs-dir
        hostPath:
          path: /etc/ssl/certs
          type: Directory
      – name: agg-certs-dir
        hostPath:
          path: /etc/pki/tls/certs/
          type: Directory

 

Il faut ensuite se connecter sur les workernodes pour relancer containerd. Ci-dessous un exemple pour TKG (Une solution Kubernetes as a Service pour tous les Clouds)

# ssh capv@<ip-YourWokerNode>

capv@YourWokerNode$ sudo systemctl restart containerd

Déployer Kubeapps

Kubeapps est un projet Bitnami. Bitnami a été racheté par VMware en 2019 et fait partie maintenant de la gamme Tanzu et se nomme Tanzu Application Catalog. Kubeapps est un catalogue de déploiement et de management d’applications et de services. Il arrive déjà connecté à la marketplace bitnami et il est possible de synchroniser une registry type docker. https://bitnami.com/kubernetes/kubeapps

La documentation d’installation est assez bien faite, je n’ai trouvé de complexité, juste un peu de vigilance au niveau des rôles si vous êtes en production. Un utilisateur peut avoir un accès en lecture seul et/ou en lecture/écriture (nécessaire pour déployer des applications), le scope des droits peut être le cluster et/ou le namespace. L’utilisateur à la possibilité de créer des namespaces pour y déployer des applications. https://github.com/kubeapps/kubeapps

Installation via Helm (version 3 dans mon exemple)

$ helm repo add bitnami https://charts.bitnami.com/bitnami

$ kubectl create namespace kubeapps

(attention il y a deux tirets normalement, je ne sais pas pourquoi wordpress en affiche qu’un. Si vous faites un copié/colé, enlever le tiret et en mettre deux à la place)

$ helm install kubeapps –namespace kubeapps –set useHelm3=true,frontend.service.type=LoadBalancer bitnami/kubeapps

 

Créer un compte et le rôle pourvoir accéder à Kubeapps et pour installer des applications, créer des namespace directement depuis l’interface. Récupérez le token pour se logger à l’interface

$ kubectl create -n default serviceaccount loeilduse

$ kubectl create clusterrolebinding loeilduse –clusterrole cluster-admin –serviceaccount=default:loeilduse

 

$ kubectl get -n default secret $(kubectl get -n default serviceaccount loeilduse -o jsonpath='{.secrets[].name}’) -o go-template='{{.data.token | base64decode}}’ && echo

Récupérer le token, il sera demandé lors de la connexion à Kubeapps via le navigateur (ci-dessous un exemple)

eyJhbGciOiJSUzI1NiIsImtpZCI6IkV5bEdwMDU2dkVqTld5dFJtR03RHNVSmhmd09rc1licnJFSm81Nm1EZ3MifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImxvZWlsZHVzZS10b2tlbi1yOGJiZyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZShY2NvdW50Lm5hbWUiOiJsb2VpbGR1c2UiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiI5NTMwZjZmNy1jMzEzLTQ5MzctODY2ZS1mMDUwNzY0YmI0MDEiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6ZGVmYXVsdDpb2VpbGR1c2UifQ.kTZhrfFXrOS-S2a3x6oiyO6mqi7d62lrsmy-pTLpFX-XsjAK8NZQ95WaKqJ1gHkQfJa4ah-gvSQOVeI0y8-TueS24iAbrMfFwuocbHOJa6d9x9dfBSNGfxgW2DZaA22TokAVm_VT_DmFbV7uqsOSdFNRC6GnogoUmaO0P2-X1A8HHXuur04zRU5pH-8kNUrmIclIlpUPIaDlkRV1v94nZfn1S0RswG4wzTY1IeqQn4Nn5vh9XKfavp7l42vSWH7F0AHnkpTpY94GN8TNVoninPBkl5ktcF6PZJ7qbYlEK4wz5Y_cEgJFArGYn3kaihzZ aZsAH7a6scVsk7KcTuYRQ

Récupérer l’IP fournit par le service Load Balancer

$ Kubectl get svc -n kubeapps

 

 

Ouvrir la page web avec l’IP fourni par le load balancer et renseigner le token récupéré :

 

Si vous avez le message ci-dessous, revoyez la partie création user/droit décrite juste avant

 

Vous devriez avoir ces types d’écrans

 

Lorsque vous déployez des applications depuis le catalogue Kubeapps, n’oubliez pas de modifier le fichier yaml si vous voulez y accéder depuis l’extérieur de votre cluster Kubernetes. Ci-dessous, un exemple de déploiement de Dokuwiki pour qu’il soit accessible via un load balancer (voir tout en bas) :

 

Déployer Harbor avec type loadBalancer

Pour rédiger mes articles de vulgarisation, je suis amené à tester certains produits. C’est très chronophage surtout quand ça ne fonctionne pas du premier coup. Je fais pas mal de recherche sur Internet pour voir si des posts donnent des astuces mais des fois, il faut tenter d’autres pistes. C’est pour cela que j’ai créé une rubrique Astuces Techniques, j’y posterai un résumé des résultats de mes recherches qui pourrait aider d’autres personnes.

Je consacre ce premier article au déploiement de la registry Harbor développée initialement par VMware puis donné à la CNCF. J’ai beaucoup galéré pour la déployer afin qu’elle soit accessible derrière un loadbalancer, j’avais le message suivant lorsque que docker tentait de s’y connecter :

#docker login harbor.cpod-tkg.az-lab.shwrfr.com
Authenticating with existing credentials…
Login did not succeed, error: Error response from daemon: Get https://harbor.cpod-tkg.az-lab.shwrfr.com/v2/: Get https://core.harbor.domain/service/token?account=admin&client_id=docker&offline_token=true&service=harbor-registry: dial tcp: lookup core.harbor.domain: no such host

J’utilise un environnement vSphere 7 pour héberger un cluster Kubernetes V1.17.3 déployé via TKG V1. Le loadbalancer est un Metallb V0.82, Habor V1.10.1 et HELM 3

Télécharger Harbor via Helm 3 :

#helm repo add harbor https://helm.goharbor.io

#helm fetch harbor/harbor –untar

Créer une storage class nécessaire aux volumes persistent, cette storage class utilise une storage policy que j’ai déjà créé dans vSpehre :

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

  name: silver-storage-class

  annotations:

    storageclass.kubernetes.io/is-default-class: “true”

provisioner: csi.vsphere.vmware.com

parameters:

  storagepolicyname: “silver-storage-class”

Installer Harbor avec les bons paramètres notamment externalURL :

# helm install -n harbor-system registry harbor/harbor –set expose.type=loadBalancer,expose.tls.commonName=harbor.cpod-tkg.az-lab.shwrfr.com,externalURL=https://harbor.cpod-tkg.az-lab.shwrfr.com

Si vous n’utilisez pas de certificats signés, il faut que docker soit autorisé à utiliser une registry “Insecure” :

#cat /etc/docker/daemon.json

{

        “insecure-registries” : [“172.20.4.71”, ’’harbor.cpod-tkg.az-lab.shwrfr.com’’]

}

# systemctl restart docker

Télécharger le certificat depuis l’UI d’Harbor => projets => <votre nom de projet> => Reprositories => REGISTRY CERTIFICATE et le copier dans le répertoire docker prévu à cet effet :

#mkdir -p /etc/docker/certs.d/172.20.4.71 et/ou mkdir -p /etc/docker/certs.d/’harbor.cpod-tkg.az-lab.shwrfr.com’

Normalement vous devriez pouvoir vous connecter à Harbor via Docker :

#docker login harbor.cpod-tkg.az-lab.shwrfr.com
Authenticating with existing credentials…
WARNING! Your password will be stored unencrypted in /root/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded